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Abstract.
Background: Growing interest in treating Alzheimer’s disease (AD) patients in the earliest stages requires new clinical endpoints.
Currently, there is no established clinical endpoint or treatment duration for mild cognitive impairment (MCI) trials.
Objective: This analysis attempts to answer “how long the MCI clinical trial would be necessary” using the Clinical Dementia
Rating Sum of Boxes (CDR-SB) as a clinical endpoint, where CDR-SB is an example of a suitable tool to assess both cognition
and function as a single primary efficacy outcome.
Methods: A longitudinal model was developed to predict the CDR-SB time-profile. The CDR-SB is considered ideal to assess
both cognition and function as a single primary endpoint in MCI trials. The median time for clinically “worsening”, defined
using several thresholds for change from baseline, was calculated using individual CDR-SB predictions. Covariates predictive
of worsening were also evaluated.
Results: The median time to a 1-point change in CDR-SB was approximately 2 years in MCI patients. Higher baseline severity in
disease, lower hippocampal volume, and ApoE4 carrier status were significant covariates predicting shorter times to worsening
(faster progress). The results indicate that at least a 2-year trial would be necessary with 30% (or more) disease modifying drug
with a sample size of n = 350 to detect the significant difference from placebo (80% power) and to achieve the target mean effect
size of 0.5 point change in CDR-SB.
Conclusion: Predictions of CDR-SB changes from a longitudinal model are able to inform study design and possible enrichment
strategies, based on covariate analyses, for prospective planning of clinical trials in MCI patients.
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INTRODUCTION

Recent advances in the understanding of the under-
lying pathophysiology of Alzheimer’s disease (AD)
have led to clinical testing of numerous new treatment
modalities aimed at altering the disease early in its
clinical progression, and growing interest in starting
to treat patients in the earliest stages even before the
disease manifests clinical symptoms. The Alzheimer’s
Disease Assessment Scale-cognitive subscale-11 items
(ADAS-cog11) has been the most commonly used out-
come measure of cognitive function in anti-dementia
clinical trials in mild to moderate AD patients. How-
ever, ADAS-cog11 is not sensitive enough to detect
changes in the pre-dementia stages of AD or mild
cognitive impairment (MCI) [1], and there is no gen-
erally accepted, validated clinical endpoint for use in
therapeutic trials. Therefore, tremendous efforts are
currently ongoing to explore new, informative end-
points for clinical trials [2–8].

In addition, the FDA has recently released a draft
guidance on treating early stages of AD [9], sug-
gesting that the Clinical Dementia Rating Scale Sum
of Boxes (CDR-SB) [10] or composite measurement
tools may be acceptable for use in clinical trials. The
guidance indicates specifically that CDR-SB would be
appropriate to assess both cognition and function as
a single primary efficacy outcome measure. CDR-SB
is a widely used scale that has demonstrated validity
and reliability in longitudinal assessment; therefore,
CDR-SB may also be suitable for use in early AD [11,
12].

Early detection of AD is thought to offer the best
opportunity for effective intervention; however, there
is no clear answer for “how long the clinical study in
MCI patients would be necessary” to demonstrate clin-
ically meaningful changes. One possible clinical trial
is to evaluate whether a new drug can delay the con-
version from MCI to AD. However, it would require
a long clinical study, possibly several years, since the
estimated rate of progression from MCI to AD is up to
10% per year [13]. Another study indicates that about
half of people who have visited a doctor for their MCI
symptom develop dementia in three or four years [14].
This is problematic, because lengthy clinical trials are
costly, which could discourage clinical development
of novel compounds and delay beneficial treatments
reaching patients. To address such issues, Eisen et al.
[15] suggested that a 1 point change (or even 0.5 point)
in CDR-SB signified a clinically meaningful “worsen-
ing”, and that changes in CDR-SB could potentially
be used to evaluate the clinically meaningful effect of

a new drug in MCI clinical trials as a surrogate for
conversion from MCI to AD.

In this analysis, the longitudinal CDR-SB data from
an MCI population captured in the ADNI database
was modeled, and covariates of interest were evaluated
using method perhaps atypical to this indication [16].
The median time-to-worsening defined as a 0.5, 1, or 2
point change from baseline in CDR-SB were calculated
and compared based on individual CDR-SB predic-
tions. The median times to a 1 point change in CDR-SB
were also calculated by disease severity, age, gender,
hippocampal volume, and ApoE4 to demonstrate their
effects on the disease progression. In addition, power
was calculated as a function of sample size using a
hypothetical disease modifying drug to show the utility
of the approach.

METHODS

Data

Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu/).
Analyses were performed on the data downloaded on
June 10, 2013 from the ADNI web portal (http://adni.
loni.usc.edu/data-samples/access-data/) using “adni-
merge” package (R-version). All data points available
for early and late MCI patients in the ADNI database
were included in this analysis except the subjects con-
firmed withdrawal from the study with only baseline
data. In addition, the data from all populations (normal,
early MCI, late MCI, and AD) were used to visualize
the whole trend of disease progression with CDR-SB
(Supplementary Fig. 1). Detailed ADNI protocol infor-
mation can be found at http://www.adni-info.org/.

Modeling longitudinal CDR-SB scores

The CDR-SB was assessed at baseline and at sub-
sequent in-clinic visits (every 6 months) during the
study. One could use a time-to-event analysis and the
observed CDR-SB data to estimate the time, for exam-
ple, to 1 point change from baseline (the threshold).
However, technical and conceptual issues arise. First,
a subject is only known to have crossed the threshold
sometime between the prior clinic visit at which the
threshold was not achieved, and the current clinic visit,
at which the threshold difference was achieved. Thus
the data are interval censored, which requires nonstan-
dard time-to-event techniques for analysis. Evaluation
of the observed CDR-SB data in this manner includes

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/data-samples/access-data/
http://www.adni-info.org/
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Fig. 1. Conceptual scheme for data transformation and model fitting. A) Transformed data were fitted using a linear model (Equation 1).
B) Data and individual predictions by the model were transformed back to the original CDR-SB scale (range 0 to 18). Note the linear prediction
on the transformed scale is not linear on the CDR-SB scale because the transformation is nonlinear. C) The dotted lines show the 0.5 point
change from baseline in CSR-SB and the red arrow depicts the approximate time the model predicts a 0.5 increase relative to baseline. A standard
time-to-event analysis ignores the underlying trend in the CDR-SB scores for that individual and would have used assumed that the worsening
occurred between Month 6 and Month 12. The model however reflects a smooth underlying disease progression, and provides an estimate of
when the subject crosses the threshold with respect to this smooth process (approximately 21 months using this conceptual example).

the day-to-day or visit-to-visit random variation within
subject, which can induce unappealing bias. For exam-
ple, a subject could achieve a 1 point change between
Visit 2 and 3, yet this change could be lost between
Visit 3 and 4, with a 1 point change observed sometime

thereafter. Such a time-to-event analysis ignores the
underlying trend in the CDR-SB scores for that indi-
vidual. One would expect a smooth underlying disease
progression, and it is desirable to know when the sub-
ject crosses the threshold with respect to this smooth
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process (Fig. 1). Additionally, the time to event ignores
the information contained in the data prior to and after
the threshold, which can be helpful in predicting this
clinical worsening precisely. Thus, we propose predict-
ing the time to worsening from a longitudinal model.
Efficient use of all the information is anticipated to
reduce the sample size needed to show a difference.

The range of the CDR-SB is 0 to 18 by 0.5 point
increments (bounded outcome scores). Such data can
have non-normal and atypical distributions. These
issues have been discussed and a method to handle
bounded outcome score data was published by Hut-
macher et al. [17]. This method was applied recently
for modeling FAQ (Functional Assessment Question-
naire), which has a range of 0 to 30, from the ADNI
database [16]. We used the same method to model lon-
gitudinal CDR-SB, and the methodology is described
below.

A nonlinear mixed-effect likelihood-based approach
was used, and the non-boundary data were scaled
between 0 and 1 by dividing each CDR-SB value by
18. A transformation was applied to the data, which
provides flexibility for handling the difficult data dis-
tribution shapes. The approach considers the boundary
data as censored when formulating the likelihood. This
is based on the assumption that the boundary data are
reported as such because the measurement instrument
lacks sufficient precision to differentiate the underlying
true measurements from the boundaries. We consider
the data sufficiently continuous for application of this
approach.

The proposed model, conditional on the subject-
specific random effects, on the transformed response
scale is:

y = h (CDR-SB(t)) = αINT + ηINT

+ (αSLP + ηSLP ) · t + ε=µ (t)+ε (1)

where y is the transformed CDR-SB value after apply-
ing the transformation h(), CDR-SB(t) is the CDR-SB
score at time t. �INT is a parameter predicting the
baseline status (i.e., the intercept), ηINT is the random
effect for the intercept, and �SLP is the slope rate or
rate of change in transformed CDR-SB over time (rep-
resenting the underlying progression of the disease),
which as a random effect ηSLP . The random effects
were assumed to be normally distributed, and different
variances were expected for each patient population
(early MCI and late MCI). � is residual error, assumed
to be normally distributed with variance σ2. The trans-
formation applied in this analysis has a nice feature in
that the scale used to measure the progression of the

disease does not need to influence the rate of disease
progression to maintain feasible predictions. One does
not need to bind the slope (�SLP ) to be positive, nor
does one need to force �SLP to become smaller as the
disease progresses toward the upper boundary to avoid
predicting scores outside of the 0–18 range (which
would unnecessarily complicate the model). Figure 1
provides a conceptual scheme for the data transfor-
mation and model fitting for predictions of individual
profiles. More technical details for the interested can
be found elsewhere [16, 17].

Covariate evaluation

Based on previous findings [16, 18–22], base-
line covariates were selected for evaluation: disease
severity, age, education, ApoE4 genotype, gender,
total cholesterol, and hippocampal volume (imaging
biomarker). The same approach used previously [16] in
which a composite score derived from baseline MMSE
and FAQ (SEVb = ((30 − MMSEb) + FAQb)), cog-
nitive and functional domains, respectively) was used
to describe baseline severity. Approximately 20% of
baseline hippocampal volume data were missing in the
database, and these missing values were imputed by
replacing with median values for those after match-
ing by age group, gender, ApoE4 status, and diagnosis
(early MCI or late MCI), since there are relatively high
correlations among these covariates (Supplementary
Fig. 2). During the model building process, param-
eter estimates with/without imputed covariate were
compared to assess the sensitivity to the imputation.
Cerebrospinal fluid biomarkers (such as A�42, p-tau)
were not tested in the model, because these data were
missing for nearly half of the patients.

Covariates were added one by one in a forward step-
wise manner [23], examining the change in minimum
objective function values (OFV), and also the precision
of the parameter estimates. A decrease of >6.6 in the
OFV indicated that a proposed model with 1 additional
parameter provided a better fit than the reduced ref-
erence model (p < 0.01 Chi-Square). Covariates were
retained if the model was stable and its parameter esti-
mates demonstrated acceptable precision.

Model fitting was performed using a population
analysis approach (NONMEM Version VII, Level
1.2, ICON Development Solutions, Ellicott City, MA)
with the Laplace Conditional Estimation method.
Data handling/missing covariate imputation, diag-
nostic graphics, and post-processing of output were
performed using R (version 2.15.3). SAS (version 9.3)
was used for power and sample calculation.
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Fig. 2. Distribution of CDR-SB by each visit (Month) in early MCI (EMCI) and late MCI (LMCI) population. Vertical lines in red are median
values at each visit.
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Prediction of clinical worsening

Once the final longitudinal model was identified,
CDR-SB was predicted for each individual patient by
week and the median time to 1 point change from
baseline was calculated, considered as clinical wors-
ening for the patient. If 1 point change from baseline is
not observed during the duration of the available data
(either still following up, or dropped out from the study
before it occurred), then the maximum time (the last
observation time in the dataset) was recorded for the
patient (and treated as censored in the summary dis-
cussed below). The same method was applied for 0.5
point change or 2 point change in CDR-SB.

Kaplan–Meier plots were generated to visualize the
difference in 0.5, 1, and 2 point change in CDR-SB, and
median time for each threshold was calculated using
survfit function in R (version 2.15.3). The median
time is considered as the time to 50% population (in
the dataset) worsening to the specified thresholds (0.5,
1, and 2 points), therefore, the time to 20% population
worsening was also calculated for comparison purpose
which may help to reduce the duration of the clinical
studies in the exploratory stage. In addition, the median
times to a 1 point change were plotted by covari-
ates (dichotomized into groups) to demonstrate their
effect on disease progression and potential enrichment
strategy.

Power as a function of sample size to detect signif-
icant differences from placebo in MCI clinical trials
were computed using data generated from a hypo-
thetical disease modifying drugs with varying effect
magnitudes (10 to 50%) on the slope. The minimum
disease modifying effect to achieve 0.5 point change
from placebo at 24 and 36 months clinical trials was
also determined.

RESULTS

The dataset used in this analysis included 301 early
MCI patients (currently up to 24 months), and 550 late
MCI patients (up to 72 months). The distribution of
observed CDR-SB is displayed as histograms subset
by patient group (early MCI, late MCI) and by visit
(month) in Fig. 2. The red vertical line is the median
CDR-SB value at each visit, and these lines shift toward
the right (worsening) as the study progresses. The dis-
tributions are also widening (more variability) over
time. Supplementary Fig. 1 also clearly indicates that
the disease progresses over time in normal elderly,
early MCI, late MCI, and AD patients in the ADNI
database.

Table 1
Estimated median time to clinically worsening (1 points change from

baseline in CDR-SB) by covariates

Covariates Median time to
worsening
(Months)

Baseline severity
≤6 (milder) 45.0 [33.0, 56.2]
>6 (severe) 14.5 [12.8, 16.0]

Hippocampal Volume (mm3 )
≥6700 55.2 [39.0, NA]
<6700 18.5 [16.2, 21.2]

Baseline severity +
Hippocampal Volume

Group 1 NA [56.2, NA]
Group 2 28.0 [23.2, 34.8]
Group 3 19.5 [13.8, 36.5]
Group 4 14.0 [11.8, 15.0]

Age (y)
≤75 22.8 [20.5, 29.5]
>75 23.5 [19.5, 32.0]

Gender
Male 29.5 [23.2, 35.2]
Female 19.5 [16.5, 22.0]

ApoE4
Carrier 18.5 [15.8, 21.5]
Non-carrier 37.2 [29.5, 51.8]

Covariates are dichotomized at approximate median values in
the late MCI population in ADNI database. Baseline severity
is defined as bFAQ + (30-bMMSE). Since baseline severity and
hippocampal volume are highly correlated, the median time to wors-
ening for each combination was calculated: Group = 1 (mildest):
milder in baseline severity (BSEV ≤6) and higher hippocam-
pal volume (≥6700 mm3), group = 2 (milder): milder in baseline
severity and lower hippocampal volume (<6700 mm3), group = 3
(more severe): more severe in baseline severity (BSEV >6)
and higher hippocampal volume, group = 4 (most severe): more
severe in baseline severity and lower hippocampal volume. [ ]:
95% CI.

Evaluation of covariates

Baseline severity, hippocampal volume, and ApoE4
(carrier versus non-carrier) genotype were signifi-
cantly impacting the intercept (�INT) and/or the rate
of disease progression (�SLP). ApoE4 was also tested
as number of alleles (0, 1, or 2); however, there was no
improvement in fit compared to using carrier (1 or 2)
versus non-carrier (0). Age and gender were not found
statistically significant; however, these covariates were
kept in the final model as these are known to be clin-
ically important covariates for understanding disease
progression. Years of education and total cholesterol
were not found to be significant. The parameter esti-
mates from the base model and the final model are
summarized in Supplementary Table 1. Overall, the
final model parameters were well estimated with rea-
sonable precision.
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Fig. 3. Individual predicted CDR-SB overlaid with observed CDR-SB (few patients are shown here). Lines in black are individual predicted
CDR-SB by every week, and circles are observed CDR-SB. Note that if the patient was dropped, or lost follow-up, or still ongoing, the predicted
CDR-SB were obtained up to the maximum time observed for the patient.

Model evaluation

Figure 3 shows several predicted individual CDR-
SB time-profiles from the final model, overlaid with
observed data. These plots indicate that the model ade-
quately characterizes the individual time courses. The
performance of the final model was also assessed with
regards to the population. This was achieved by calcu-
lating selected statistics of the observed data across
the entire population and comparing these statistics
to prediction intervals of these statistics computed by

simulating data from the model. This model evalua-
tion is provided as Supplementary Fig. 3. The observed
data statistics are within the model-based predictions
intervals indicating the model has captured the central
tendency of the data over time as well as the variability
in the population.

Comparison for the time to clinically “worsening”

Figure 4 shows the Kaplan-Meier plots for using
different definitions of worsening (thresholds of 0.5,
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Fig. 4. Kaplan–Meier plots for 0.5 point, 1 point, and 2 points change from baseline in CDR-SB and estimated time to worsening (for 20% and
50% population) in late MCI population. [ ]: 95% CI.

1, and 2 points change from baseline) as well as 20%
or 50% populations achieving this threshold). Note that
early MCI patients show little or no “worsening” with
this dataset: therefore, clinical worsening was calcu-
lated only for late MCI patients. The results indicate
that 50% of the population will achieve the 0.5 thresh-
old in approximately 13.3 months (>1 year), or the 1.0
threshold in 23.3 month (∼2 years). Using the 20%
population target, a 0.5 threshold was achieved at 6.5
months, or 1.0 threshold in 12 months.

Figure 5 shows the Kaplan–Meier plot for 1 point
change from baseline in CDR-SB by covariates, and
patients were dichotomized in to groups (above and
below the approximate medians, i.e., age of 75 years,
baseline severity of 6, and hippocampus volume of
6700 mm3) in the late MCI population. Table 1 sum-
marizes the median time to achieve a 1 point change for
each group corresponding to Fig. 5. Baseline severity
and baseline hippocampal volume are strong predictors
for the median time-to-worsening, which stems from
the strong significance found for these covariates dur-
ing model building. For example, the median time to
worsening was 45.0 months for “milder” severity ver-
sus 14.5 months for “more severe” patients in late MCI
population. The estimate was 18.5 months for lower
hippocampal volume patients and 55.2 months for
higher hippocampal volume patients (Table 1). Since
baseline severity and hippocampal volume are corre-
lated, the median times were also calculated for each

combination. Although there is some overlap (Fig. 5,
top-right panel), the estimate was 14.0 months for the
most severe patient (group 4: higher baseline severity
and lower hippocampal volume) who are most likely to
progress fast, and 19.5 months for the next severe group
(group 3), and 28.0 months for the milder group (group
2). The median time was greater than 84 months for the
mildest patients (group 1: lower baseline severity and
higher hippocampal volume). The estimates for time-
to-worsening were 22.8 and 23.5 months for ≤75 and
>75 years of age, respectively with a threshold of 1.0
point change in CDR-SB (not a significant covariate).
Gender was not a significant covariate either during
the model building; however, the Kaplan–Meier plot
shows some difference between male and female. This
gender effect may due to correlations with other sig-
nificant covariates (no further investigation was made
in this analysis). The estimates were 29.5 and 19.5
months for male and female, respectively, which indi-
cates, in general, female progresses faster than male.
ApoE4 was a significant covariate, and the estimates
were 18.5 and 37.2 months for carrier and non-carrier,
respectively.

Power and sample size for disease modifying
drugs in MCI trials

Figure 6A shows the power estimates to detect
significant difference from placebo in 24-month and
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Fig. 5. Kaplan–Meier plots for 1 point change from baseline in CDR-SB by covariates. Covariates are dichotomized at approximate median values
in the late MCI population in ADNI database. Baseline severity is defined as bFAQ + (30-bMMSE). Since baseline severity and hippocampal
volume are highly correlated, interaction plot was shown in top-right panel. Group = 1 (mildest): milder in baseline severity (BSEV≤6) and higher
hippocampal volume (≥6700 mm3), group = 2 (milder): milder in baseline severity and lower hippocampal volume (<6700 mm3), group = 3 (more
severe): more severe in baseline severity (BSEV>6) and higher hippocampal volume, group = 4 (most severe): more severe in baseline severity
and lower hippocampal volume. The x-axis in month.

36-month MCI trials. 80% power would be achieved
with approximately n = 350 (per arm) for 24 month
trial and n = 200 (per arm) for 36 month trial if the
disease modifying effect were 30%. The results indi-
cate that a 20% (or less) disease modifying drug has
less power, and requires a greater sample size (e.g.,
n = 800 for 24-month trials with 20% disease modify-
ing drug). Figure 6B shows the power estimates versus
sample size with 24 month clinical study, with and
without enrichment strategy (ApoE4 carrier or lower
hippocampal volume (<6700 mm3) patient groups ver-
sus all late MCI patients). The required sample size is
reduced approximately 25% (i.e., n = 350 to n = 250 to
achieve 80% power with disease modifying effect 30%,
and n = 700 to n = 550 with disease modifying effect
20%). Figure 6C summarizes the predicted effect size
(mean change from placebo) for different hypothetical
disease modifying effects, and the disease modifying
effect requires 35% and 20% for 24 and 36 month tri-

als, respectively, to achieve a mean effect size of 0.5
points (difference from placebo) in CDR-SB.

DISCUSSION

A disease progression model was developed to
describe longitudinal CDR-SB scores in MCI patient
from the ADNI study. The novel approach of this anal-
ysis is the application of the mathematical model to
predict the underlying trend in the CDR-SB scores for
each individual patient and calculate the time to “clini-
cally worsening” based on certain specified thresholds.
In general, the use of a time-to-event survival analysis
approach (e.g., time to a diagnosis of dementia) is a par-
ticularly appealing primary efficacy measure in clinical
trials in early AD [9], but it would be challenging to
conduct such studies considering the cost and length
of the clinical trials.
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(A)

(B)

(C)

Fig. 6. Power and sample size to detect significant difference in CDR-SB in late MCI trials. A) 24 and 36 month clinical trials for hypothetical
disease modifying drugs. B) 24 month trial for hypothetical disease modifying drugs (30, 20, 10%) with enrichment strategy. C) Predicted effect
size (mean change from placebo) over time for hypothetical disease modifying drugs.
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Ultimately, this analysis attempts to answer “how
long the MCI clinical trial would be necessary using
CDR-SB as a clinical endpoint” by testing different
threshold as a “clinical worsening”, where CDR-SB is
an example of a suitable tool to assess both cognition
and function as a single primary efficacy outcome mea-
sure [9]. The results indicate that the underlying disease
progression takes approximately 1 year for 50% of the
population to experience “worsening”, defined by a 0.5
point change from baseline, and it takes 2 years for a
1 point change and 4 years for 2 point change from
baseline (Fig. 4). If we consider in the time needed
for 20% of the population to become worse instead of
50% of the population, the length of the clinical trial
becomes shorter, i.e., approximately half year for 0.5
point change and 1 year for 1 point change.

The length of a clinical study is also dependent on
the effect size and sample size. The hypothetical dis-
ease modifying effects were simulated from the model,
and the results indicate that at least 2-year trial would
be necessary with 30% (or more) disease modify-
ing drug with a reasonable sample size (n = 350 per
arm) to detect the significant difference from placebo
(80% power) and to achieve the target mean effect size
(treatment-placebo) of 0.5 point change in CDR-SB
(Fig. 6).

Baseline severity, hippocampal volume, and ApoE4
were significant covariates and have a large impact
on disease progression; the median time to worsen-
ing (1 point change from baseline) was dramatically
shortened (progress faster) with severe MCI patients
compared to milder patients (14.5 versus 45.0 months),
lower hippocampal volume versus higher (18.5 versus
55.2 months), and ApoE4 carrier versus non-carrier
(18.5 versus 37.2 months) (Fig. 5, Table 1). This
evaluation would be expected to improve the patient
selection by predicting which patients would likely
progress to AD dementia within a time range appro-
priate for a therapeutic clinical trial.

The power and sample size calculations for lower
hippocampal volume and ApoE4 carrier indicate that
the sample size could be reduced approximately 25%
with these groups when 80% power is maintained
(Fig. 6B). This enrichment strategy will enable enroll-
ment of subjects who are more likely to benefit from a
treatment, and thus will enable a trial sponsor to reduce
subject numbers and increase power.

In particular, the findings of lower hippocampal vol-
ume patients with faster disease progression in this
analysis align with the newly proposed diagnosis of
AD by Dubois et al. [24, 25], in which the use of
biomarkers is emphasized and one or more abnormal

biomarker is considered among structural neuroimag-
ing with MRI, molecular neuroimaging with PET,
and cerebrospinal fluid analysis of A� or tau pro-
teins for diagnosis of MCI. However, no consensus
on the quantitative thresholds for these biomarkers
has been reached to define prodromal AD due to the
variability between assay/measurement methods. Har-
monization and validation of these tools are currently
needed in AD research. To address these challenges,
the C-Path Institute (http://c-path.org/programs/camd/
camd-overview/) has formed two biomarker work-
ing groups: imaging biomarker and cerebrospinal
fluid biomarker, including contributors from regulatory
agencies, academia, and pharmaceutical companies.
These working groups were established to facilitate
the discussion about, harmonization of, and validation
of the biomarkers being used to define AD pathol-
ogy, and to establish these biomarkers as qualified
tools to be used in drug development. In our analysis,
we used an approximate median hippocampal volume
(6700 mm3) as a cut-off to select the lower hippocam-
pal volume population. Therefore, we need to predict
the time of achieving a certain point change and calcu-
late the power and sample size for prodromal AD trials
once the biomarker threshold(s) for prodromal AD is
defined and agreed among researchers. In addition, we
intend to re-visit this analysis and conduct further eval-
uate the validation of the model when more data from
ADNI-2 becomes available.

In conclusion, the approach to model the longi-
tudinal CDR-SB first, then to calculate the median
time to threshold for clinically “worsening”, was able
to estimate the duration of the clinical studies in
MCI population with different scenarios, and possi-
ble enrichment strategy. For future research, a drop
out model will be incorporated to simulate realistic
clinical trial outcomes, and to identify designs and
inclusion/exclusion criteria that may lead to more sen-
sitive trials.
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